Precalculus Assignment Sheet Unit 10

Problems which Require the Use of all Math Skills

Assignment 1	2.3 Average Rate of Change HW: p. 80 \# 57, 59, 69, 71a, c, 77, 79
Assignment 2	2.4 Piecewise Defined \& Absolute Value Functions HW: Complete Worksheet \& p. 89 \#33, 35, 37, 43, 47
Assignment 3	2.6 Problem Solving with Geometry HW: Complete Worksheet \& p. 107 \# 11, 13, 15, 24
Assignment 4	2.6 Problem Solving with Graphing HW: Complete Worksheet \& p. 107 \# 1-9 odd
Assignment 5	11.1 Systems of Linear Equations HW: Complete Worksheet \& p. 700 \#43 p. 716 \# 75
Assignment 6	Math for College Courses HW: Complete Worksheet
Assignment 7	Appendix Algebra \& Calculator Skills: HW: Complete Worksheet \& p. A34 \#7, 17; p. A89 \#53, 89, 101
Assignment 8	14.1 Limits HW: p. 860 \# 7, 9, 17-21 odd, 29, 31, 37, 39, 41
Assignment 9	14.3 Continuity HW: p. 873 \# 7-31 odd
Review	Complete Supplementary Worksheet

> 2.3 Average Rate of Change
> HW: p. $80: 55,57,59,69,71,77,79$

1. Find the average rate of change in $f(x)=x^{2}+12$ from $x=-1$ to $x=4$.
2. Let $f(x)=2 x^{2}+3 x$. Find the slope of the secant line (average rate of change) through the points, $(x, f(x))$ and $(x+\Delta x, f(x+\Delta x))$
3. A stone is thrown upward from a height of 2 meters with an initial velocity of 8 meters per second. If only the effect of gravity is considered, then the stone's height in meters after t seconds is given by the equation $H(t)=-4.9 t^{2}+8 t+2$.
a. Find a formula for the average velocity from 1 to $(1+\Delta t)$.
b. Use your answer in part a to find the average velocity from $t=1$ to $t=3.5$.
4. Refer to the graph of g at the right. Find the average rate of change in g over each interval.
a. $\quad C$ to E
b. $\quad 0 \leq x \leq 35$

Over what interval does the average rate of change in g have the given value?
c. 0
d. $\quad-\frac{3}{2}$
5. Suppose $\mathrm{P}=(3,7)$ and $\mathrm{Q}=(9, a)$ are points on the graph of the function h. If the average rate of change in h from $\mathrm{x}=3$ to $\mathrm{x}=9$ is $-\frac{5}{3}$, find a.

2.4 Piecewise Defined Functions

HW: Complete Worksheet \& p. 89 \#33, 35, 37, 43, 47
Example: Sketch: $f(x)=\left\{\begin{array}{l}x^{2}-2 x-8, \quad x \leq 1 \\ 16-x^{2}, \quad x>1\end{array}\right.$

Absolute Value Functions

Write as piecewise functions and sketch a graph. Verify your graph using a calculator.

1) $\mathrm{y}=\sqrt{\mathrm{x}^{2}}=|\mathrm{x}|$

2) $y=|x-3|$

3) $y=|x+3|-|x-1|$

4) $y=\left|x^{2}+x-12\right|$

5) $y=x|x+4|$

6) $y=\frac{-x}{|x|}$

7) $y=\frac{\left|x^{2}-2 x\right|}{x-2}$

answers
1. $y= \begin{cases}x ; & x \geq 0 \\ -x ; & x<0\end{cases}$

2. $y= \begin{cases}-3 x+5 ; & x \leq 0 \\ -x+5 ; & 0<x<\frac{5}{2} \\ 3 x-5 ; & x \geq \frac{5}{2}\end{cases}$

3. $y= \begin{cases}-1 ; & x>0 \\ 1 ; & x<0\end{cases}$

8) $y=\left\{\begin{array}{l}x ; \quad x \leq 0, x>2 \\ -x ; \quad 0<x<2\end{array}\right.$

3. $y=\left\{\begin{array}{l}-4 ; \quad x \leq-3 \\ 2 x+2 ; \quad-3<x<1 \\ 4 ; \quad x \geq 1\end{array}\right.$

4. $y=\left\{\begin{array}{l}x^{2}+x-12 ; \quad x<-4, x>3 \\ -\left(x^{2}+x-12\right) ;-4 \leq x \leq 3\end{array}\right.$

5. $y= \begin{cases}x(x+4) ; & x>-4 \\ -x(x+4) ; & x \leq-4\end{cases}$

- Your work must be completed on a separate sheet of GRAPH PAPER.
- Define all variables and draw a diagram for each problem to receive credit.

1) A container with a square base, vertical sides, and open top is to be made from $1000 \mathrm{ft}^{2}$ of material. Sketch and label a diagram. Write an equation for the volume of the container as a function of the length of a side of the base.
2) A right circular cylinder is inscribed in a cone with radius 6 inches and height 10 inches. Write an equation for the volume of the cylinder as a function of the radius of the cylinder.
3) A 17 ft ladder is leaning against a wall. If the bottom of the ladder is xft from the wall and the top of the ladder is y feet above the ground, write an equation for the horizontal distance the ladder is from the bottom of the wall as a function of the vertical distance the ladder is above the ground.
4) Wheat is poured through a chute and falls in a conical pile whose radius is always half the height of the pile.
a) Write an equation for the volume of the pile as a function of the height of the pile.
b) Write an equation for the volume of the pile as a function of the radius of the pile.

Answers: 1. $V(x)=250 x-\frac{x^{3}}{4}, 0 \leq x \leq 10 \sqrt{10}$
3. $x(y)=\sqrt{17^{2}-y^{2}} \quad$ 4a) $\quad V(h)=\frac{\pi h^{3}}{12}, h \geq 0$
2. $V(r)=10 \pi r^{2}-\frac{5 \pi r^{3}}{3}, 0 \leq x \leq 6$

4b) $\quad V(r)=\frac{2 \pi}{3} r^{3}, r \geq 0$

2.6 Problem Solving with Graphs

HW: Complete Worksheet \& p. 107 \# 1-9 odd

- Your work must be completed on a separate sheet of GRAPH PAPER.
- Define all variables and draw a diagram for each problem to receive credit.

1) Write the equation for the distance between the point $(0,9)$ and the curve $x=2 y^{2}$ as a function of y.

2) A rectangle has its two lower corners on the x-axis and its two upper corners on the curve $y=16-x^{2}$. Write an equation of the area of the rectangle as a function of y.

3) Sketch the functions, shade the region enclosed by the functions, and label all points of intersection on the boundary of the functions.

$$
y=x^{2} \text { and } y=x+6
$$

4) Sketch the functions, shade the region enclosed by the functions, and label all points of intersection on the boundary of the functions.
$y=\cos 2 x, y=0, x=\frac{\pi}{4}$, and $x=\frac{\pi}{2}$

Answers:

1) $d(y)=\sqrt{4 y^{4}+y^{2}-18 y+81}$
2) $\quad A(y)=2 y \sqrt{16-y} \quad$ (assuming that the rectangle is symmetric with the y axis.) $\quad 3$) points of intersection are:
$(-2,4)$ and $(3,9) \quad 4)$ points: $\left(\frac{\pi}{4}, 0\right),\left(\frac{\pi}{2},-1\right),\left(\frac{\pi}{2}, 0\right)$

11.1 Multivariable Linear Equations

HW: Complete Worksheet \& p. 700 \#43 p. 716 \# 75

In Algebra II you learned the method of substitution and elimination to solve systems of equations, linear and non-linear. In this section we are going to solve systems of up to three equations using 3 variables. To review simple substitution and elimination problems, take a look at 7.1 and 7.2. These sections should familiar to you. Also remember that an equation in the form $A x+B y+C z=D$ is a line in three dimensional space. Three lines in 3D space can have no solution, one solution or infinitely many solutions.

Ex. 1: Solve the system of linear equations using "back substitution"

$$
\left\{\begin{array}{l}
x-2 y+3 z=9 \\
y+3 z=5 \\
z=2
\end{array}\right.
$$

List the solution as a coordinate triple (, ,)
Ex. 2: Solve the system of linear equations using any method. (Take some notes on your favorite method as we go over the possibilities!)

$$
\left\{\begin{array}{l}
x-2 y+3 z=9 \\
-x+3 y=-4 \\
2 x-5 y+5 z=17
\end{array}\right.
$$

List the solution as a coordinate triple (

Ex. 3: The height at time t of an object that is moving in a (vertical) line with constant acceleration a is given by the position equation

$$
s=\frac{1}{2} a t^{2}+v_{0} t+s_{0}
$$

The height, s, is measured in feet, the acceleration a is measured in feet per second squared, t is measured in seconds, v_{0} is the initial velocity (at $t=0$), and s_{\circ} is the initial height. Find the values of a, v_{0}, and s_{\circ} if $s=52$ at $t=1, s=52$ at $t=2$, and $s=20$ at $t=3$.

Ex. 4: Find a quadratic equation, $y=a x^{2}+b x+c$, whose graph passes through the points $(-1,3),(1,1)$, and $(2,6)$.

Ex. 5: (Calculator) An inheritance of $\$ 12,000$ was invested among three funds: a money market fun that paid 5% annually, municipal bonds that paid 6\% annually, and mutual funds that paid 12% annually. The amount invested in mutual funds was $\$ 4000$ more than the amount invested in municipal bonds. The total interest earned during the first year was $\$ 1120$. How much was invested in each type of fund?

Math For College Courses

HW: Complete Worksheet

1. Solve for x :
$25 x^{2}\left(4+x^{2}\right)^{-\frac{3}{2}}+6 x\left(4+x^{2}\right)^{-\frac{1}{2}}=0$
2. Write as a piecewise function and sketch:

$$
f(x)=\left|x^{2}-4 x-5\right|
$$

3. Simplify $\frac{\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{w}}}{x-w}$
4. Sketch the following, without using your calculator, and identify domain and range:

$$
\begin{aligned}
& y=\sin ^{-1} x \\
& y=x^{\frac{2}{3}} \\
& y=\frac{x}{|x|}
\end{aligned}
$$

5. Sketch the following, without using your calculator, and identify the domain, range and all asymptotes.
a. $f(x)=\frac{(x+4)^{2}(x-2)}{(x+6)(x-2)}$
b. $f(x)=-(x+4)^{3}(x-2)^{2}(x+1)$
*C. $\quad f(x)=\ln |x+1|$
*d. $\quad f(x)=e^{x^{2}}+1$
(These are more challenging)

6. Sketch the angle, identify a reference angle and find the exact value: $\sin \frac{2 \pi}{3}$
7. Given that $\sin x=\frac{3}{5}, 0<x<\frac{\pi}{2}$, find $\sin 2 x$
8. Solve $\sin ^{2} x-\cos ^{2} x=0$ on $[0,2 \pi)$
9. Solve the equation without using your calculator: $y^{3}-2 y+1=0$.
10. Solve
a. $\ln \left(x^{2}+4\right)-\ln (x+2)=2+\ln (x-2) \quad$ b. $5^{x}+125 \cdot 5^{-x}=30$

Math for College Courses -- Answers

1. $x=0,-\frac{8}{3},-\frac{3}{2}$
2. $f(x)=\left\{\begin{array}{lr}x^{2}-4 x-5, & x \leq-1 \text { or } x \geq 5 \\ -x^{2}+4 x+5, & -1<x<5\end{array}\right.$
3. $-\frac{1}{\sqrt{w x}(\sqrt{w}+\sqrt{x})}$
4.

$$
y=\sin ^{-1} x
$$

D: $[-1,1], \mathrm{R}:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
y=x^{\frac{2}{3}}
$$

Domain: $(-\infty, \infty)$
Range: $[0, \infty)$

Equation 1: $y=\left(x^{\wedge}(1 / 3)\right)^{\wedge} 2$

Equation 1: $y=x| | x \mid$
$y=\frac{x}{|x|}$ \qquad

Domain: $(-\infty, 0) \cup(0, \infty)$
Range: $\quad\{-1,1\}$
5. Sketch the following, without using your calculator, and identify the domain, range and all asymptotes.
a. $f(x)=\frac{(x+4)^{2}(x-2)}{(x+6)(x-2)}$
b. $f(x)=-(x+4)^{3}(x-2)^{2}(x+1)$

Equation 1: $\left.y=\left((x+4)^{2}(x-2)\right)\right)(((x+6)(x-2))$
*C. $\quad f(x)=\ln |x+1|$
*d.
$f(x)=e^{x^{2}}+1$
Domain: all reals except $x=-6,2$
Range: $(-\infty,-8] \cup[0, \infty)$
Asymptotes: $\mathrm{x}=-6, \mathrm{y}=\mathrm{x}+2$
D

\square Equation $1: y=\ln |x+1|$

Domain: $(-\infty, \infty)$
Range: $(-\infty, 128]$

Equation $1: y=\ln |x+1|$

Domain: all reals except $x=-1$
Range: $(-\infty, \infty)$
Asymptotes: $\mathrm{x}=-1$

$f(x)=e^{x^{2}}+1 \quad$ Domain: $(-\infty, \infty)$ Range: $[2, \infty)$
6. α is the reference angle, $\alpha=\frac{\pi}{3} \sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2}$
7. $\sin 2 x=24 / 25$
8. $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
9. $y=1, \frac{-1 \pm \sqrt{5}}{2}$
10. a. $x=2 \sqrt{\frac{e^{2}+1}{e^{2}-1}}$
b. $x=1,2$

1) Simplify the expression:

$$
\frac{2 x\left(1-x^{2}\right)^{1 / 3}+\frac{2}{3} x^{3}\left(1-x^{2}\right)^{-2 / 3}}{\left(1-x^{2}\right)^{2 / 3}} \quad x \neq 1,-1
$$

2) Write a simplified function that is identical to the original function. $f(x)=\frac{x^{3}+1}{x^{2}-1}$
3) Sketch $f(x)=x^{2}+1$ and the point (3,0). Write the function $d(x)$ which expresses the distance between an arbitrary point on $f(x)$ and $(3,0)$. Use your calculator and $d(x)$ to find the shortest distance from $(3,0)$ to the graph. What is this distance? What are the coordinates of the point on the graph where this occurs?
4) An open box is to be made from a 16 -inch by 30 -inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. Write a function, $\mathrm{V}(\mathrm{x})$, for the volume of the box (include its domain). Use your calculator to find the maximum volume. What size should the squares be to obtain this box?

Day 1: Calculator Worksheet

1. Sketch the function, $f(x)=x^{4}+5 x^{3}-310 x^{2}-50 x+3000$, accurately displaying its characteristics.
2. Find all zeros of the polynomial $p(x)=x^{4}-2 x^{3}-5 x^{2}+4 x+6$. Using synthetic division, verify all rational roots.
3. Find all real solutions to the equation: $-141.12+21 k+k^{3}=-149$
4. Find the point of intersection in the first quadrant for $y=e^{-x^{2}}$ and $y=1-\cos x$
5. Solve the inequality: $80-10 \cos \left(\frac{\pi \mathrm{t}}{12}\right) \geq 78$ on the interval [0, 24).
6. Find the following function values to 3 decimal places:
a. $f(x)=\frac{x^{3}}{e^{x}}, f(5), f(10), f(20)$
b. $f(x)=(1+x)^{1 / x}, f(1), f(.1), f(.01)$

Answers: 1. $\frac{2 x\left(3-2 x^{2}\right)}{3\left(1-x^{2}\right)^{4 / 3}} 2 . f(x)=\frac{x^{2}-x+1}{x-1}, x \neq-1$ 3. Min dist: 2.74, Coord: (.735,
1.540) 4. Max Vol:726 cu in Squares: 3 1/3 in X 3 1/3 in
1.

2. $\{-1,3, \pm \sqrt{2}\}$ 3. -.373
4. $(0.942,0.412)$
5.
$5.230 \leq \mathrm{t} \leq 18.769$
6. a. $0.842,0.045,0.000$
b. 2, 2.594, 2.705

14.1 Limits—A Graphical Approach

HW: p. 860 \# 7, 9, 17-21 odd, 29, 31, 37, 39, 41
$f(x)=\frac{x^{2}-4}{x-2}, x \neq 2$.
Describe the curve at $\mathrm{x}=2$.

Describe the behavior of the y-values near $x=2$.

Use your calculator to find the y - values (4 decimal place accuracy) near $\mathrm{x}=2$.

X	1.75	1.9	1.99	1.999	2	2.001	2.01	2.1	2.25
$\mathrm{f}(\mathrm{x})$									

From this table, as x approaches 2 , the value of $f(x)$ approaches \qquad .

In calculus, we say that the limit of $f(x)$ as x approaches 2 is __. Or $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=$ \qquad ..

We can work with more complicated situations to describe how a curve behaves if we introduce right and left hand limits, we we denote: $\lim _{x \rightarrow c^{+}} f(x)$ and $\lim _{x \rightarrow c^{-}} f(x)$.

Example: For $\mathrm{g}(\mathrm{x})$, shown in the graph, find
a. $\lim _{x \rightarrow-3^{-}} g(x)$
b. $\lim _{x \rightarrow-3^{+}} g(x)$
c. $\lim _{x \rightarrow-3} g(x)$
d. $\lim _{x \rightarrow-2^{+}} g(x)$
e. $\lim _{x \rightarrow-2^{-}} g(x)$
f. $\lim _{x \rightarrow-2} g(x)$

g. $\lim _{x \rightarrow+^{+}} g(x)$
h. $\lim _{x \rightarrow 1^{-}} g(x)$
i. $\lim _{x \rightarrow 1} g(x)$
I. $\lim _{x \rightarrow 4} g(x)$
j. $\lim _{x \rightarrow 4^{+}} g(x)$
k. $\lim _{x \rightarrow 4^{-}} g(x)$

14.3 Continuity

HW: p. 873 \# 7-31 odd

Definition	The function, f, is continuous at $\mathrm{x}=\mathrm{c}$, provided	
	1.	$\mathrm{f}(\mathrm{c})$ is defined
2.	$\lim _{\mathrm{x} \rightarrow \mathrm{c}} \mathrm{f}(\mathrm{x})$ exists	
3.	$\lim _{\mathrm{x} \rightarrow \mathrm{c}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{c})$	

Explain why the function is not continuous for the following values of x by referring to the part of the definition which is violated.
a. $x=3$
b. $x=-1$
c. $x=-3$

Use the definition to verify that the function is continuous at:
a. $x=0$
b. $x=-1$
c. $x=4$
\qquad

Please fully demonstrate reasoning. Provide a diagram, sketch or definition of variables when appropriate. Label any graphs with appropriate units.

1. A piece of wire $\boldsymbol{\pi} \boldsymbol{y}$ inches long could be bent into a circle or a square.
a) If the wire is bent into a circle, what is the area of that circle in terms of \boldsymbol{y} ?
b) If the wire is bent into a square, what is the area of that square in terms of \boldsymbol{y} ?
c) Which area is larger? Why?
2. $f(x)=|x-1|, g(x)=2-\ln x$
a. Find the domain and range of $(f \circ g)(x)$
b. Sketch $(f \circ g)(x)$, labeling asymptotes and intercepts.

3. A line with slope $\boldsymbol{m}(\boldsymbol{m}<0)$ passes through a point $(\boldsymbol{a}, \boldsymbol{b})$ (\boldsymbol{a} and \boldsymbol{b} are constants) in the first quadrant. Express the area of the triangle bounded by this line, the $\mathrm{x} \sim$ axis and $\mathrm{y} \sim$ axis in terms of a, b, and m.
4. A 36 inch wire is cut into 12 pieces which are soldered (joined) together to form a rectangular frame whose base is twice as long as it is wide. The frame is then covered with paper forming a box.

a) State an expression for the volume $[\boldsymbol{V}(\boldsymbol{x})]$ of the box in terms of \boldsymbol{x}, with domain.
b) What are the dimensions of the box with maximum volume? (Hint: Calculator)
5. $f(x)=\left|\frac{1}{2}-\cos (2 x)\right|,[0, \pi]$
a. Find the zeros of $f(x)$
b. Rewrite $\mathrm{f}(\mathrm{x})$ as a piecewise function
6. Sketch the functions, shade the region enclosed by the functions, and label all points of intersection on the boundary of the functions.
$y=\arctan x, \quad y=\frac{\pi}{4} \quad$ and the y-axis

7. Evaluate the following limits or function values, based on the graph of $f(x)$ below. If a limit does not exist, explain why.
a. $\lim _{x \rightarrow-2^{-}} f(x)$
b. $\lim _{x \rightarrow-2^{+}} f(x)$
c. $\lim _{x \rightarrow-2} f(x)$
d. $f(-2)$

e. $\lim _{x \rightarrow-3^{-}} f(x)$
f. $\lim _{x \rightarrow-3^{+}} f(x)$
g. $\lim _{x \rightarrow-3} f(x)$
h. $f(-3)$
i. $\lim _{x \rightarrow 1^{-}} f(x)$
j. $\lim _{x \rightarrow 1^{+}} f(x)$
k. $\lim _{x \rightarrow 1} f(x)$
8. $f(1)$
m. $\lim _{x \rightarrow 4^{+}} f(x)$
n. $\lim _{x \rightarrow 4^{-}} f(x)$
p. $\lim _{x \rightarrow 4} f(x)$
q. $f(4)$
r. $\lim _{x \rightarrow-\infty} f(x)$
s. $\lim _{x \rightarrow \infty} f(x)$
9. State the values of x where the above function is discontinuous and justify
